Post-combustion Capture:

now the best option?

A Symbiosis of Power Plant Design and Separation Science

Cristina Botero, Jörn Rolker, Wolfgang Arlt

Chair of Separation Science and Technology,

Chemical and Bioengineering,

University of Erlangen-Nuremberg

Germany

State-of-the-art of post-combustion scrubbing is not competitive!

Reasons:

- 1. Chemical reactive solvents not needed and too energy consuming
- 2. Scrubbing <u>added</u> not integrated into power plant

Way-out:

- 1. balance the solubility/energy consumption by means of thermodynamics
- 2. simulate a power plant in the chemical engineering software (Aspen Plus®) and optimize the configuration: process synthesis

motivation

Drawbacks of CO₂ absorption with Amines

- high energy penalty
- volatility
- degradation losses (O₂, NOx, SO₂)
- corrosion

Tailor a suitable solvent by thermody

balanced physical absorption

high capacity & selectivity

"no" vapor pressure

no carbamate reaction

available on ton scale @ reasonable price

Still to check:

Compatibility towards other components

hyperbranched polyamide (Dendritech)

to be published in Industrial and Engineering Chemistry Research (2007)

CCS Pittsb

fulfilling the demands of CO₂ partial pressure

hyperbranched polymers

- Polyester
- Polyether
- Polyamine

conclusion:

difference in solubility to CO₂ by factor of 80

Steam cycle of supercritical steam process 280bar / 600℃ / 620℃ (lignite)

1000 MW_{el} η=49% (LHV) 964 kg/s flue gas

209,1 kg/s CO₂

Flue gas:

 N_2 : 71,7 Mol% $\frac{1}{2}$

CO₂: 14,6 Mol%

H₂O: 9,5 Mol%

O₂: 3,4 Mol%

Ar: 0,9 Mol%

Output Variable	Deviation	
	absolute	relative
Temperature boiler outlet	1.4 K	0.16%
HP outlet	1.2 K	0.20%
boiler (reheater) outlet	1.6 K	0.18%
IP outlet	2.6 K	0.52%
LP outlet	0.0 K	0.00%
Gross electric power output	1.25 MW	0.13%
Net electric power output	1.25 MW	0.14%
Gross electric efficiency	0.06 %pts	0.11%
Net electric efficiency	0.07 %pts	0.14%

The following slides showed the penalty of power plant efficiency over the capture rate of CO₂.

These data are available after having made a secrecy agreeement with Prof.Arlt. Please write to Wolfgang.Arlt@CBI.Uni-Erlangen.de

hyperbranched polymer, 60% CO₂ recovery

- a chemically reacting scrubbing solvent is not helpful for efficient removal of CO₂ from flue gas of coal-fired power stations: a new class of solvent detected
- the present energy cycle process set-up is optimized, a scrubbing unit can NOT be simply added: a superior set-up was found
- a recovery rate of CO₂ is subject to optimization and NOT to political presetting
- at 50% CO₂ recovery less than 3% abs. efficiency drop is possible (without liquefication of CO₂).

what to do?

the rules are established, a cheap and robust real scrubbing agent must be found with the help of chemistry

With this work, post-combustion scrubbing is superior to IGCC and oxy-fuel

